首页

化工数学(周爱月)习题解答--第6章

化工数学(周爱月)习题解答——第六章

6-2 解:

(a )2(3i -4j +k ) -(j +2i -3k ) =(2? 32) i -(2? 41) j +(2+3) k (b )(c )(d )(e )(f )由书中 6-3 解:(a )(b )(c ) =4 i -9

j +5 k ( i + j ) (2 i -2 j ) =2-2=0 i j k

2(3 i -4 j +k ) ? ( j

2 i -3k ) =23-41=22( i + j +k )

21-3

grad [xy (y 2

+z 3

)]=grad [xy 3

+xyz 3

)]=(y 3

+yz 3

) i +(3xy 2+xz 3) j +3xyz 2

) k div (yi +xj ) =抖y

(-x ) 0

抖x

+y + z

=0 p187例6-5知 ? (1

r

)

? (r -1)

-r -3r

,所以

? 2(1r

) 蜒 r (-1=) ? (r - 3r =) -r -3? r r ? (-r 3)

=-3r -3+ r (+r -5

r ) =-3-r 3+3-r 3=0

a x

a y a z 21-301-3a (b ? c

)

(abc

) =b x

b y b z =1

-21=0

-21=20 c x

c y

c z

-1

1

-4

-4

1

-4

c (a ? b ) (a ? b ) c (abc ) =20

a 创(b c ) =(a c ) =(-2+1+12)( ? b i -2 (b j +k a ) c ) -(2-2-3)(- i + j -4k ) =8 i -19 j -k

(a 创b ) c =(a c ) ? b (b c ) a (d )

=11(i -2j +k ) -(-1-2-4)(2i +j -3k ) =25i -15j -10k

6-4 解:记 a

, a 1=2i +3j +4k 2=i +2j -2k

i j k

a =a

1? a 2234=-14i +8j +k

12-2

a

a 0=a

=

=

-14 i +8 j +k ) ∵ cos q =a 1 a 2

a a =0? q

90

126-5 解:

(1)证明三个向量共面的充分必要条件是 A ( B ?

C ) 0

① 必要性:已知三个向量共面,设F =B C ,

则F 垂直于B , C 所在的平面,即F ^A

(∵A , B , C 共面)有A F =0薮A (B C ) =0

② 充分性:已知 A (B ? C

)

0,当B 垂C 0时,设F =B 则 A F = ?

c o s q 0

∵ A 构0, F

0? cos q 0? q

90

即 F ^A

所以A , B , C 共面。

1

3

-2

1

3

-2

(2)A (B ? C

)

1-53=0-85=0,三个向量共面。2-210-8

5

6-6 解:

C

(A 创B ) (A C ) =[(A 创B ) A ] C =[(A A ) B -(B A ) A ] C

A A A C =(A A )(B C ) -(B A )(A C ) =

B A B C

6-8 解:参照6-6题,令其中第二个括号中的A =c , C =d 即可。

2 抖R ´6-9 已知 R =x 2yi -2y 2zj +xy 2z 2k ,求在点(2,1,-2) 处的抖x 2

2

R 。 y 2

抖R

解:2=2yi ,

抖x

2

2轾抖R ? 2抖x 臌 2

抖R

? 抖x 2

2

R y 2

(2,1,-2)

R 2

=-4zj +2xz k 2y

i j k

2y 00=-4xyz 2j -8yzk =-32j +16k

(2,1,-2)

2

0-4z 2xz

2

(2,1,-2)

2

R

y 2(2,1,-2)

6-12 在t 时刻,从原点到一动点的向量为r =i cos w t +j sin w t ,其中ω为常数。

(1)求动点速度v ,并证明v 垂直于r ;

(2)求加速度a ,并证明其指向原点,且大小与原点到质点的距离成正比;

(3)证明v ´r 是一常向量,因此动点的轨迹曲线处于某一平面内。

解:

dr

=w (-i sin w t +j cos w t ) , (a )动点速度:v =dt

v r =(-w i s i n w t +w j c o w s t ) w i (c w o +s t w j ∴ v ^r

s w i =n t

dv 2

=-w (i cos w t +j sin w t ) =-w 2r (b )动点加速度:a =dt

矢径r 的方向是由原点指向动点,而动点加速度a 的方向与矢径r 的方向

相反,是由动点指向原点,其大小与矢径r 的大小成正比;

(c )r ? v

i j k

cos w t sin w t -w sin w t w cos w t

0=w k ,为常向量。 0

222222432

6-13 解:j A =xy z (xzi -xy j +yzk ) =x y z i -x y zj +xy z k

3 ¶(j A ) ¶(j A ) 24

=4y zi -2y j +0k , 22

3

=4i -2j

6-14 (a )(b )6-15 6-16 6-17 6-18

6-19 抖x z

抖x z (2-, 1, 1)

R

(u ) du =[(u -u 2

) i +2u 3

j -3k ]du =(12u 2-13u 3) i +14 2

u j -3uk +c ò2

1R (u ) du =轾犏臌(12u -3u ) i +2u j -3uk 2213 14 =-5 i +15

j -3k 1

62 i

j r k

? r

-A sin q A cos q B =0,∴ 1ò2p (r ? r ) d q 0

-A sin q A cos q B

20

d 骣ç d 2A 2dt ççç桫A ? dA ÷dt ÷÷dA ÷dt ? dA

dt A ? A d A

dt 2

dt 2

d 骣 ∴蝌A ? d 2A

珑 dA dt 2dt

dt 珑珑珑桫A ? 鼢

dt

鼢鼢鼢dt d 骣桫A

? dA dt

A ?

dA dt

c

? j

? (3x 2

y

y 3z 2

) =6xyi +(3x 2-3y 2z 2) j -2y 3

zk

? j

(1,-2, -1)

-12 i -9

j -16k

? j

[(2xyz +4z 2

) i +x 2zj +(x 2

y +8xz ) k M 0

]

M =8 i -

j -10k

l =10=

3(2 i - j -2k )

? j

¶l

=逊j

M l (8 i -4

(2 i j -2k M 0

0=j -10k ) ?

) 370

3

3

x 2+y 2+z 2=9, z =x 2+y 2-3在点(2,-1,2)处的夹角。

解:

解:∵解:∵ 解: 解:求曲面

22

解:令 j 1=x 2+y 2+z -9, j 2=x +y -23-z , 则法向量

n 1=? j

1

2(x i +y +j z ) k , 2=n ? j

2

j 2+x i 2-y

k

在点(2,-1,2)处

n 1(2,-1,2) =4i -2j +4k , n 2(2,-1,2) =4i -2j -k

n 1 n 2

cos q ==

n 1n 2

q =54.42?

=

=0.5819

0.302p

U ? 2v v 2U 。

6-20 证明蜒 (U v -v ? U )

证明:

蜒 (U v -v ? U ) 蜒 (U v ) -蜒 (v U )

=蜒U v +U ? 2v 蜒v U -v 2U =U ? 2v v 2U

6-21 解:若v 为管形场,则押 v 0

? v ? [(x 3y ) i +(y -2z ) j + ∴ a =-2

6-22 解:由式(6-66)得

(x +

a z ) k =]+1+1a =2+ a =

2

汛(汛A ) =蜒( A ) -(蜒 ) A =蜒( A ) - A

222

=蜒[ (x yi -2xzj +2yzk )]-? (x yi 2xzj +2yzk )

22

=? (2xy 2y ) -? (x yi 2xzj +2yzk )

=2yi +(2x +2) j -2yi =2(x +1) j

6-24 解:一次作用:蜒 A , 二次作用:蜒 (? A )

A 0

¶A y

¶A

z ) =

y z

¶A

蜒( A ) =? x

抖x

汛(汛A ) =蜒( A -) 蜒(

) A

6-25 求证:

(1)? (xv ) x ? v i v ;

(2)汛(xv ) =x 汛v +i v ;

(3)蜒 (j ) =(蜒 ) j 貉

2

j .

证明:

(1)由式(6-45):? (xv )

x ? v

v ? x

x ? v

v i =x ? v

i v

(2)由式(6-63):汛(xv ) =x 汛v +汛x v =x 汛v +i v (3)设为直角坐标系 ?

抖 抖

i +j +, 抖x y 抖z

2

?

2

22

抖2 2

x 抖2y z

抖 j j 抖 抖j

蜒 (j ) =(i +j +k ) (i +j +k )

抖x y 抖z x 抖y z

2

抖j =+抖x 2

j 2j

+= 2j 22y z

抖 抖 抖

(蜒 ) j =[(i +j +k ) (i +j +k )]j

抖x y 抖z x 抖y z

22+) j = j 22y z

2

2

2

2

抖=(2+抖x

∴蜒 (j ) =(蜒 ) j 貉

6-27 解:(a ) (A ? ) j A ? j

24

4

3

j

223322

(2yzi -x yj +xz k ) (4xyz i +2xz j +6x yz k )

3

4

3

3

2

=8xy z -2x yz +6x yz =2xyz (4yz -x +3x z ) (b )

抖 (B x +B y +B z ) A

抖x y z

2抖22

=(x +yz +xy )(2yzi -x yj +xz k )

抖x y z

222

=2y (xy +z ) i +2x y (x -z ) j +x z (z +2y ) k

(B ? ) A

(c )

(d )6-28

i

j

k

(A

囱) j =2yz -x 2y

xz 2j 抖 抖x

y

z

=[(-x 2

y 抖2抖z -xz

y ) i +(xz 2抖抖x -2yz z ) j +(2yz 抖抖y +x 2

y ) k ](2x 2yz 3) =-2x 3z 2(3xy +z 3) i +4xyz 3(z 4-3xyz ) j +4x 2yz 3

(z +xy ) k

x

A 囱j =A

i

j k

囱(2x 2yz 3) =2yz -x 2y xz 2

4xyz 32x 2z 36x 2yz 2

=-2x 3z 2(3xy +z 3) i +4xyz 3(z 4-3xyz ) j +4x 2yz 3

(z +xy ) k

验证平面格林定理:

骣抖Q 蝌 l

Pdx +Qdy

=

P D

÷

抖x -y ÷÷

闭曲线C 的图形见右图。

解:

蝌 Pdx +Qdy =

l 22

(xy +y ) dx +x dy c

轾122

=犏(xy +y ) dx +x dy 蝌0犏臌==

y =x 2

01

轾0

+犏(xy +y 2) dx +x 2dy 犏臌1(x 2+x 2+x 2) dx

1

y =x

蝌(x

1

3

+x 4+2x 3) dx +

ò

1

骣[1**********](x +3x -3x ) dx =çx +x -x =+-1=-çç0

桫540

54蝌骣çç抖Q P ÷

蝌(x -2y ]dxdy

D

ç桫

抖x -y ? ÷÷dxdy =蝌[2x (x +2y )]dxdy =D

D

=蝌1

轾0犏x

犏臌x

2(x -2y ) dy dx =

1

轾犏臌

(xy -y 2

) x 0

x 2dx =

蝌1

2

-x 2) -(x 3-x 4) dx =

1

犏轾0

(x 0

(x 4-x 3) dx

=骣1桫5x 5-14x 4=1-1=-105420

左边=右边,证毕。

6-29 求椭圆x =a cos q ,

y =b sin q 的面积。

解:矢径 r

=x i + y ,由散度定理的二维形式(j

6-53)得 2蝌dxdy =

蝌骣抖x +y ÷? dxdy xdy -ydx

S

S

桫抖x y ÷÷

=

ò

2p 0

(a cos q ? b cos q

b sin q a sin q ) d q

=ab ò2p 0

d q =2ab p

蝌d x d =

y a p b

S

6-30 解:F =4xzi -y 2j +yzk ,逊F =4z -2y +y =4z -y ,由散度定理得20

? Fd t 蝌 F nd s =蝌蝌

s

D

蝌(4z -D

y ) d t

10

=

蝌蝌(4z -0

1

1

111

y ) dxdydz =

10

1

(2-y ) dydx

1

=蝌(2y -y 2) dx =

020

33

dx =22

F t d

6-31 解:验证散度定理

s =蝌蝌 F n d

s

D

(1) 左边,对x =1的曲面,n =i ,蝌F nd s =

s x =1

1

蝌F idydz =蝌

s x =1

-1

1

-1

1dydz =4

对x =-1的曲面,n =-i ,蝌F nd s =

s x =-1

蝌F idydz =-s x =-1

-1

11-1

(-1) dydz =4

∴蝌F nd s =4+4=8, 同理,对y =? 1, z

s x =

1

1曲面,也有

蝌F nd s =

s y =? 1

F nd s =3? 8蝌F nd s =8, 即 蝌

s z

1

24

s

(2) 右边

? Fd t 蝌 F ? nd s 蝌蝌

s

D

1-1

-1

11-1

3dxdydz =3蝌 d t =3? 8

D

24

左边=右边,证毕。

6-40 解:

(3x -3y ) i -6xyj

i j k 抖

=0 汛v =

抖x y z 3x 2-3y 2-6xy 0

(a ) v =? j

2

2

∴ j (x , y ) =x 3-3xy 2是速度势。

(b

)v =

3(x 2+y 2)

(c )由P207的式(6-128)知

? y -v y i +v x j =6xyi +(3x 2-3y 2) j

d y =-v y dx +v x dy =6xydx +(3x 2-3y 2) dy y (x , y ) =3x 2y -y 3+c y (0,0)=0\c =0

y (x , y ) =3x 2y -y 3y (x , y ) =3x 2y -y 3=c

(d )