首页

陶瓷材料论文

透明陶瓷的研究现状与发展展望

摘要:透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。 综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。

关键词:透明 陶瓷 透光性 制备工艺 应用

前言:自1962年R.L.Coble首次报导成功地制备了透明氧化铝陶瓷材料以来,为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用〔1〕。近38年来,世界上许多国家,尤其是美国、日本、英国、俄罗斯、法国等对透明陶瓷材料作了大量的研究工作,先后开发出了Al2O3、Y2O3、MgO、CaO、TiO2、ThO2、ZrO2等氧化物透明陶瓷以及AlN、ZnS、ZnSe、MgF2、CaF2等非氧化物透明陶瓷.

透明陶瓷的分类

透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。

1氧化物透明陶瓷

对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。到目前为止,已经先后研发出了多种材料:Be()、ScZ()3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。)仁’0,”】、铝镁尖晶石(Mg()·A一2()。)〔’2,’3]和透明铁电陶瓷pLZ子川等。其中AiZ姚、M四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。

2非氧化物透明陶瓷

对非氧化物透明陶瓷的研究是从20世纪80年代开始的。非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。但经过各国研究人员的共同努力和深人研究,现已经成功地制备出了多种透明度很高的非氧化物透明陶瓷,其中最典型的是AIN、GaAS、MgFZ、ZnS、CaFZ等透明陶瓷。

与氧化物透明陶瓷相比,大多数的非氧化物透明陶瓷不仅室温强度高,而且高温力学性能好,此外,还具有优良的抗急冷急热冲击性能。这些都使得对非氧

化物透明陶瓷的研究势在必行。

透明陶瓷的制备工艺

透明陶瓷的制备过程包括制粉、成型、烧结及机械加工的过程。为了达到陶瓷的透光性,必须具备以下条件〔4〕:(1)致密度高;(2)晶界没有杂质及玻璃相,或晶界的光学性质与微晶体之间差别很小;(3)晶粒较小而且均匀,其中没有空隙;(4)晶体对入射光的选择吸收很小; (5)无光学各向异性,晶体的结构最好是立方晶系;(6)表面光洁度高。因此,对制备过程中的每一步,都必须精确调控,以制备出良好的透明陶瓷材料。

2.1 粉料制备

透明陶瓷的原料粉有四个要求〔5〕:(1)具有较高的纯度和分散性;(2)具有较高的烧结活性;(3)颗粒比较均匀并呈球形;(4)不能凝聚,随时间的推移也不会出现新相。传统的粉料制备方法主要有固相反应法、化学沉淀法、溶胶—凝胶法以及不发生化学反应的蒸发—凝聚法(PVD)和气相化学反应法。除此之外,新的陶瓷制粉工艺也不断的涌现出来,如激光等离子体法、喷雾干燥法和自蔓延法等。

制备粉料的方式对陶瓷的透光性有很大的影响。金属氧化物球磨方法制备粉料,粉料的细度不能得到保证,固相反应时,粉料的活性低,颗粒粗,即使采用热压法烧结,也不易形成高密度的陶瓷,且陶瓷的化学组成和均匀性差。而化学工艺制备粉料的显著特点是能获得纯度、均匀、细颗粒的超微粉,合成温度显著下降,这种粉料制备的陶瓷,其致密度可达理论密度的99.9%或更高。一般的化学方法,包括沉淀法、溶胶—凝胶法等制备出的原料粉具有高的分散度,从而保证其良好的烧结活性。这是因为高的分散度的颗粒具有较大的表面能,而表面能是烧结的动力,同时用化学方法制备陶瓷原料粉能较好的引入各类添加剂。例如,人工晶体研究所的黄存新等就是采用金属醇盐法合成尖晶石超细粉末。他们将金属铝和镁分别与异丙醇、乙醇反应生成醇盐化合物,再将其混合、水解、干燥、高温煅烧,即得到性能良好的尖晶石粉料以制备透明铝酸镁陶瓷。

激光气相法是利用当光与物质发生相互作用时,物质的原子或分子将吸收某些特定波长的光子而处于激发态,这些激发态的原子或分子进行重新组合,从而发生化学反应的原理,采用合适的光照射反应物分子提供活化能,使其活化。提供能量的方式很多,但在通常的方法中所提供能量的能谱分布很宽,除了采用特种催化剂外,是没有很好的选择性的。由此而导致的化学反应过程往往包含着某些不需要的副反应,从而影响产物的纯度。由于激光单色性好,谱线很窄,光强极高,用激光辐射为反应系统提供能量,可大大改善反应的选择性,提高生成物纯度。在陶瓷粉末的激光合成技术中,所采用的激光器是CO2,其辐射是在红外波段内,例如蔺恩惠等人就是采用脉冲CO2激光作辐射光源,以TiCl4以及O2作反应物,利用脉冲红外激光诱发的自由基反应成功地合成了TiO2纳米粉。其工艺简单,成本较低,产品的质量较高,是很有发展前途的方法之一。

自蔓延高温合成法(SHS)是指对于

放热反应的反应物,经外热源点火而使

反应启动,利用其放出的热量,使反应自

行维持,并形成燃烧波向下传播。其反应

物可以是粉末、液体或气体。由于反应

的速度极快,产物经过温度骤变的过程,

处于亚稳态,粉末的烧结活性高,反应中

的高温使易挥发的杂质挥发,从而得到

较纯净的产物。其装置图如图1。

SHS法制备粉料优于传统的方法,其

优点在于:(1)纯度高,SHS法经过一个高

温过程,许多杂质尤其是有机物在高温下挥发,而粉料表面的氧化膜也被还原;(2)活性大,SHS法反应迅速,合成过程中温度梯度大,产品中有可能出现缺陷集中相和亚稳相,产物的活性大大提高,易于进一步烧结致密化。例如上海硅酸盐研究所的张宝林、庄汉锐等人就是以铝粉、高压氮气

为原料,将铝粉、氮化铝粉稀释剂以及氯化铵和氟化氨的混合物置于有机球磨桶中,以氮化铝球为球磨弹子,干混,然后在高压容器中,氮气压力下,以钛粉为引火剂,用通电钨线圈点火,使铝粉与氮气发生燃烧,用SHS法反应生成高氮含量、低氧含量的氮化铝粉〔8〕。

2.2 成型技术

透明陶瓷成型可以采用各种方法,如泥浆浇注、热塑泥浆压铸、挤压成型、干压成型以及等静压成型等。

干压成型是将粉料加少量结合剂,经过造粒然后将造粒后的粉料置于钢模中,在压力机上加压形成一定形状的坯体。干压成型的实质是在外力作用下,借助内摩擦力牢固的把各颗粒联系起来,保持一定的形状。实践证明,坯体的性能与加压方式、加压速度和保压时间有较大的联系。干压成型具有工艺简单、操作方便、周期短、效率高、便于实行自动化生产等优点,而且制出的坯体密度大,尺寸精确,收缩小,机械强度高,电性能好。但干压成型也有不少缺点,如模具磨损大,加工复杂,成本高,加压时压力分布不均匀,导致密度不均匀和收缩不均匀,以致产生开裂、分层等现象。

等静压成型是利用液体介质不可压缩性和均匀传递压力性的一种成型方法,它将配好的坯料装入塑料或橡胶做成的弹性模具内,置于高压容器中,密封后,打入高压液体介质,压力传递至弹性模具对坯体加压。等静压成型有如下特点:(1)可以生产形状复杂、大件及细长的制品,而且成型质量高;(2)成型压力高,而且压力作用效果好;(3)坯体密度高而且均匀,烧成收缩小,不易变形;(4)模具制作方便,寿命长,成本较低;(5)可以少用或不用粘接剂〔9〕。

2.3 烧结方法

透明陶瓷的烧结方法多种多样,最常用的是常压烧结,这种方法生产成本低,是最普通的烧结方法。除此之外,人们还采用不少特种烧结方法,如热压烧结、气氛烧结、微波烧结及SPS放电等离子烧结技术。

热压烧结是在加热粉体的同时进行加压,因此烧结主要取决于塑性流动,而不是扩散。对于同一种材料而言,压力烧结与常压烧结相比,烧结温度低得多,而且烧结体中气孔率也低;另外由于在较低的温度下烧结,就抑制了晶粒的成长,所得的烧结体致密,且具有较高的强度。热压烧结的缺点是加热、冷却时间长,

而且

必须进行后加工,生产效率低,只能生产形状不太复杂的制品。

气氛烧结是透明陶瓷常用的一种烧结工艺。为了使烧结体具有优异的透光性,必须使烧结体中气孔率尽量降低(直至零)。但在空气中烧结时,很难消除烧结后期晶粒之间存在的孤立气孔,相反,在真空或氢气中烧结时,气孔内的气体被置换而很快地进行扩散,气孔就易被消除。除了

Al2O3透明陶瓷外,MgO、BeO、Y2O3等透明陶

瓷均可以采用气氛烧结。

微波烧结是利用在微波电磁场中材料的

介电损耗使陶瓷及其复合材料整体加热至烧

结温度而实现致密化的快速烧结的新技术。微

波烧结的速度快、时间短,从而避免了烧结过

程中陶瓷晶粒的异常长大,最终可获得高强度

和高致密度的透明陶瓷。微波烧结工艺中的关

键是如何保证烧结试样的温度均匀性和防止

局部区域热断裂现象,这可以从改进电场的均

匀性和改善材料的介电、导热性能等方面考

虑。放电等离子烧结是90年代发展并成熟的

一种烧结技术,其装置示意如图2

图2 SPS设备装置图

SPS装置设备非常类似于热压烧结炉,所不同的是这一过程给一个承压导电模具加上可控脉冲电流,脉冲电流通过模具,也通过样品本身,并有一部分贯穿样品与模具间隙。通过样品及间隙的部分电流激活晶粒表面,击穿孔隙内残余气体,局部放电,甚至产生等离子体,促进晶粒间的局部结合,通过模具的部分电流加热模具,给样品提供一个外在加热源。所以,在SPS过程中样品同时被内外加热,加热可以很迅速。又因为仅仅模具和样品导通后得到加热,截断后它们即实现快速冷却,冷却速度可达300℃/min以上〔11-12〕。

作为一种烧结新技术,SPS在透明陶瓷的制备领域内还没有深入的研究,笔者所在的实验室从日本进口了一台SPS设备,本人正致力于有关SPS在透明陶瓷制备中的应用研究。利用SPS技术进行透明陶瓷的烧结,其优点在于SPS烧结技术的快速升温特性,有利于控制晶粒的异常长大,同时模具所给予的压力又促使陶瓷致密化;但是其缺点在于升温快,保温时间也比较短,这样使得气孔的完全排除比较困难,因为气孔在烧结过程中的移动速度比较慢,同时,也有可能导致晶粒的发育不完善,影响其透光性能。有关SPS进行透明陶瓷的烧结,还有待进一步的研究。

透明陶瓷的应用

1照明灯具

透明陶瓷有广泛的用途,最早是用于高压金属放电上。高压钠灯是其中最具代表性的。钠蒸气在放电时会产生l000℃以上的高温,而且具有很强的腐蚀性,玻璃灯管在这种条件下是无法正常工作的。目前,国内通过大量的研究和进口国外先进设备,在高压钠灯的生产已日趋成熟,每年国内生产厂家都要生产几千万只高压钠灯,市场需求为每年近3千万只,而且每年还以10%一15%的速度增长。 2激光材料

在激光透明陶瓷的研究中,最具有典型意义的是Nd,YAG材料服一州。Nd,YAG陶瓷激光器的整体性能已明显优于用其它方法制备的高品质的单晶.因此.多品透明Nd,YA(;陶瓷有望成为新一代的固体激光材料。

3红外窗口材料

红外夜视仪、导弹及激光制导等新一代光电设备有时是在十分严峻的条件下1一作的.如:高温高仄、强烈的摩擦以及雨水的强烈冲刷和浸蚀。为了保证系统能够正常运转以及能够准确无误地接受来自各个方位的有效信息.必须在外部使用红外窗口材料。透明陶瓷以其自身优异的综合性能在该领域有着广阔的应用前影。

4无机闪烁体

无机闪烁体在辐射探测中起着作常关键的作用,广泛应用于影像核医学、核物理、高能物理、石油勘探、安全检查等领域。目前应用最多的无机闪烁体是无机闪烁体韶.体,但是对于一些潜在的无机闪烁材料,传统的晶体性长技术难以实现,而透明陶瓷的制备技术

5电光陶瓷

电光陶瓷是一种光学性质随外加电场而改变的陶瓷。在此基础上配合其它相应的设备可以构成护目镜片和用作图像存储器。

6保护膜

目前,市场上的高档精饰件表面处理可谓多种多样,但是其性能均不够稳定。若采用镀透明陶瓷膜的方法‘川,不但成型后透光性好、光亮、耐磨性好.而且延长r使用寿命。该种透明陶瓷保护膜还可以应用于半导体器件、电器元件等的表面保护材料。此外,透明陶瓷还可以用作立体观察镜、测量电压的光电压计、全息存储器、以及用于吸收电磁波等方面门川。可见,透明陶瓷在日常生活和高科技中发挥着越来越重要的作用。

总结与展望

经过几十年的研究,透明陶瓷已取得了可喜的成果,其材料开发从过去的氧化铝透明陶瓷、氧化镁透明陶瓷、氧化钇透明陶瓷等材料扩展到透明PLZT电光陶瓷、钇铝石榴石透明陶瓷、铝镁酸透明陶瓷、氮化铝透明陶瓷以及氮氧化铝透明陶瓷等材料。这些透明陶瓷的发展拓宽了陶瓷的应用范围,但仍需进行更深入的研究,以进一步完善透明陶瓷的性能。笔者认为,未来透明陶瓷的研究发展有以下几个趋势:

(1)由于透明陶瓷不仅具有透光性,而且具有特种陶瓷自身的属性,随着其应用范围的进一步拓展,人们必然会提出越来越高的性能要求,这就要求我们必须不断的去研究新型的透明陶瓷材料以满足人们的需求。

(2)原有的生产工艺使透明陶瓷的制备受到很大的局限,随着人们对透明陶瓷材料的需求,研究和探索各种新的制备工艺,以扩大透明陶瓷的种类已成为一个重要的课题。

(3)透明陶瓷集透光性与其自身材料的特性于一身的优异性引起了人们极大的兴趣,研究其新的应用领域也就成了一个新兴的课题。从最初的窗口材料到透明薄膜、集成电路基片、高温耐腐蚀材料,透明陶瓷的应用范围在不断的扩大,对其新功能的研究也在不断的发展。

(4)随着人们对透明陶瓷的需求量增加,工业化生产的问题就摆在了我们的面前。现有的实验室制备透明陶瓷的方法已经比较成熟,但如何把科技成果转化

为生产力,如何实现工业化生产这个问题还值得我们去进一步研究,寻找一整套稳定的生产工艺以实现投资少而产出高的问题需要我们去解决。

纵观透明陶瓷的发展历程以及世界各国的发展现状和应用状况可以看出,虽然在该领域已经取得了长足的进展,但到目前为止仍有许多尚待解决的问题,在各国科研工作者的共同努力下,这些问题将逐渐得到攻克,透明陶瓷也将得到更加广泛的应用。

参考文献:

1 Sheppard LM.Ceram Bull,1990.69(11):1801

2 Ichinose N.New Ceramic,1992(5):95

3 李世普.特种陶瓷工艺学.武汉:武汉工业大学出版社,1990 4 范恩荣.电瓷避雷针,1998.164(4):45

5 黄存新.人工晶体学报,1996.25(2):108

6 蔺恩惠,李新勇等.西北师范大学学报,1995.131(1):8

7 江国键,庄汉锐等.无机材料学报,1998.13(4):568

8 杨金龙,黄 勇等.硅酸盐学报,1997.25(5):514

9 Jiping Cheng et al.Flocus on Electronics,2000(9):71 10 高 濂,宫本大树.无机材料学报,1997.12(2):129

11Mamoru Omori.Mater Sci Eng.A,2000(287):183

12赵 密,郭英奎等.哈尔滨理工大学学报,2000.5(2):121

13LitvinenkoVFetal.Sov.Powder.Metall.Met.Ceram.Soc,1983.22

(6):490

14 Jiping Cheng et al.Flocus on Electronics,2000(9):71 15 Sheppard LM.Ceram Bull,1990.69(11):1801

16 KingeryWetal.Introduetiontoeeramies.Zndedu.NewYork:WIle

yInterseienee,1976.634