首页

碳纳米材料

纳米碳材料

摘要

纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。

1. 碳纳米材料概述

纳米技术作为一种最具有市场应用潜力的新兴科学技术,其潜在的重要性毋庸置疑,一些发达国家都投入大量的资金进行研究工作。如美国最早成立了纳米研究中心,日本文教科部把纳米技术,列为材料科学的四大重点研究开发项目之一。在德国,以汉堡大学和美因茨大学为纳米技术研究中心,政府每年出资6500万美元支持微系统的研究。在国内,许多科研院所、高等院校也组织科研力量,开展纳米技术的研究工作,并取得了一定的研究成果,由中国科学院物理研究所解思深研究员等完成了定向纳米碳管阵列的合成。他们利用化学气相法高效制备出孔径约20纳米,长度约100微米的碳纳米管。并由此制备出纳米管阵列,其面积达3毫米×3毫米,碳纳米管之间间距为100微米。氮化镓纳米棒的制备,由清华大学范守善教授等完成。他们首次利用碳纳米管制备出直径3~40纳米、长度达微米量级的半导体氮化镓一维纳米棒,并提出碳纳米管限制反应的概念。并与美国斯坦福大学戴宏杰教授合作,在国际上首次实现硅衬底上碳纳米管阵列的自组织生长。准一维纳米丝和纳米电缆,由中国科学院固体物理研究所张立德研究员等完成。他们利用碳热还原、溶胶-凝胶软化学法并结合纳米液滴外延等新技术,首次合成了碳化钽纳米丝外包绝缘体SiO2纳米电缆。 用催化热解法制成纳米金刚石,由中国科学技术大学的钱逸泰等完成。他们用催化热解法使四氯化碳和钠反应,以此制备出了金刚石纳米粉。但是同国外发达国家的先进技术相比,我们还有很大的差距。德国科学技术部曾经对纳米技术未来市场潜力作过预测:他们认为到2000年,纳米结构器件市场容量将达到6375亿美元,纳米粉体、纳米复合陶瓷以及其它纳米复合材料市场容量将达到5457亿美元,纳米加工技术市场容量将达到442亿美元,纳米材料的评价技术市场容量将达到27.2亿美元。并预测市场的突破口可能在信息、通讯、环境和医药等领域。总之,纳米技术正成为各国科技界所关注的焦点。

正如钱学森院士所预言的那样:"纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是21世纪的又一次产业革命。"[1] 2011年10月19日欧盟委员会日前通过了对纳米材料的定义.根据欧盟委员会的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米

之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。1纳米等于十亿分之一米。在纳米尺度上,一些材料具有很多特殊功能。纳米材料已在人们的工作和生活中得到广泛应用。

2. 碳纳米材料的分类

2.1碳纳米管

碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值,如:其独特的结构是理想的一维模型材料;巨大的长径比使其有望用作坚韧的碳纤维,其强度为钢的100倍,重量则只有钢的1/6;同时它还有望用作为分子导线,纳米半导体材料,催化剂载体,分子吸收剂和近场发射材料等。科学家们还预测碳纳米管将成为21世纪最有前途的纳米材料,以碳纳米管为材料的显示器将是很薄的,可以像招贴画那样挂在墙上。韩国的三星电子公司已展示了从纳米管发射电子轰击屏幕的显示屏,该公司估计两年内碳纳米管显示屏将上市。虽然碳纳米管的技术性能非常好,但因成本和其他因素其大规模推广仍将会是一个长期的过程。目前,在各大学的物理系和像IBM那样的公司都在制造碳纳米管,每克碳纳米管的价格是1000美元左右。我国对此项研究虽然起步较晚,但发展很快。目前碳纳米化学方兴未艾,内容丰富,前景诱人。通过对碳纳米管的研究,必然带动相应学科的发展。

碳纳米管按照石墨烯片的层数分类可分为:单壁碳纳米管(Single-walled nanotubes, SWNTs)和多壁碳纳米管(Multi-walled nanotubes, MWNTs),多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相比,单壁管是由单层圆柱型石墨层构成,其直径大小的分布范围小,缺陷少,具有更高的均匀一致性。单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。碳纳米管依其结构特征可以分为三种类型:扶手椅式纳米管,锯齿形纳米管和手型纳米管。

2.2 碳纤维

碳纤维(carbon fiber),顾名思义,它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3 倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。碳纤维是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为230~430Gpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比

钢高。材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景。

碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。

2.3 碳球

球碳,原名富勒烯(Fullerene,又译作福乐烯),又名巴基球或巴克球(Buckyball),是于1985年发现的继金刚石和石墨之后碳元素的第三种晶体形态。C60的分子结构为球形32面体,它是由60个碳原子以20个六元环和12个五元环连接而成的具有30个碳碳双键(C=C)的足球状空心对称分子,所以,富勒烯也被称为足球烯。根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;

(2)未完全石墨化的纳米碳球,直径在50nm一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。

3. 碳纳米材料的制备方法

3.1激光蒸发石墨法

自1996年Smalley等人首次使用激光在1200下蒸发含镍、钴催化剂的石墨棒制造出纯度达7%直径均匀的单壁碳纳米管束以来,激光蒸发法获得较快发展,现已成为碳纳米材料批量制造方法之一。但因其制造成本高,需要昂贵的激光器而受到制约。激光蒸发法是在1200的电阻炉内,由激光束蒸发石墨靶,石墨靶中掺杂1.2%的颗粒直径约1m, 的Ni/Co=1:1 的金属混合粉末,通过高能激光束照射,使含金属催化剂的石墨气化,然后依靠流动氩气将其所产生的气化物带到水冷的铜柱上,产生沉积,通过控制激光束的能量密度、照射时间、气流量及流动速度、催化剂种类、反应温度等参数,达到制造合适碳纳米材料的目的。采用该法制备的碳纳米材料,经 X 射线衍射和电子显微镜检测观察,其单壁碳纳米管具有统一的直径,并且通过范德华力自组织集结成束状结构,单根管束包含100~500 根单壁碳纳米管,其二维六边形式点阵的晶格常数为1.7nm,Ni/Co 金属催化剂颗粒随机镶嵌在较大的非晶面料颗料中。

3.2 化学气相沉积法

此方法是将离子喷射的钨电极(阴极)和铜电极(阳极)进行水冷却,当Ar/He载气挟带苯蒸气通过等离子体炬后,会在阳极的表面上沉积出含有纳米级碳材料的碳灰。化学气相沉积法又称为催化裂解法,是研究员在使用石墨电弧法制取碳纳米管之后,基于气相生长炭纤维与碳纳米管形态相似的特性,通过改正催化剂处理与工艺参数,开发出的制备碳纳米材料的另一方法。而根据其催化剂的引入方式的不同又分为两种基种催化裂解法(简称基种法)和浮动催化裂解法。基种法是把催化剂颗粒预先分散在基体上,用碳氢化合物为碳源,氢气为还原剂,在分布于基体上的铁、钴和镍基等催化剂作用下,在管式电阻炉中裂解原料气形成自由

碳原子,并沉积在基体上,最终生长制备碳纳米材料的方法。由于该法具有设备投资少、成本低、碳纳米材料尤其是碳纳米管产量高、含量高,易于实现批量制备等优点,因而已成为目前碳纳米材料生产制备的一种十分常用方法。浮动催化裂解法采用含铁的有机金属化合物(如二茂铁)为催化剂原料,陶瓷或石英管为反应室,反应室放置在电阻炉中,有机金属化合物溶解在碳氢化合物液体中,放置于反应室入口处的蒸发器内,反应液体通过载气(氢气)方式以蒸汽形式一同引入反应室,通过反应室不同温度段,在含铁的有机金属化合物(如二茂铁)分解出纳米铁原子的催化作用下,控制温度区间,以制取所需的碳纳米材料。采用催化裂解法制取碳纳米材料,其裂解温度、气体流量、浓度、裂解时间等工艺参数的控制对制备的碳纳米材料至关重要,其不仅影响所制取材料的产率,而且对材料的结构、组成、性能特性关系重大。研究表明:在碳纳米管合成温度范围内,温度越低,碳纳米管的产量越高,生长速率越大,丙烯碳的利用率就越高;裂解时间越短,碳纳米管的生长速率越大,但裂解气丙烯碳的转化率就越低;而原料气丙烯流量越大,碳纳米管的产量越高,生长速率越大,但丙烯碳的转化率降低。裂解温度是碳纳米管制备的主要影响因素,温度越高,碳纳米管有效生长时间越短,通过它影响碳纳米管的有效生长时间,进而影响到碳纳米管的产量、平均生长速率和原料气中碳的转化率。然而,在该碳纳米材料制备温度范围内,温度越低,碳纳米晶的生长速度越慢,其制备的碳纳米管的平均直径就越小,且分布均匀,曲率大,相互缠绕形成纳米级团簇;而温度升高,纳米管生长速率增大,生长加快,若控制气体流量,延长加热时间,则制备的碳纳米管直径增加,曲率变小,相互缠绕程度降低;温度过于下降,则产生非晶炭。因此采用此法进行碳纳米材料制备时,应根据研究需要,正确选取和优化工艺参数条件,以制取适合研究需要的纳米材料。

3.3 凝聚相电解生成法

其采用石墨电极(电解槽为阳极),在约600℃的温度及氩气保护的条件下,以一定的电压和电流电解熔融的卤化碱盐,电解生成了形式多样的碳纳米材料。电解法是W.K.Hsu等人 以熔融碱金属卤化物为电解液,以石墨棒为电极,将其浸泡在熔化的离子盐如中LiCl,在氢气气氛中通过通电,采用电解方法合成碳纳米管及葱状结构材料。其主要影响因素有电解电压、电流、电极浸入电解液中的深度和电解时间等。

3.4 石墨电弧法

石墨电弧法是用石墨电极在一定气氛中放电,从阴极沉积物中收集碳纳米材料的方法。石墨电弧法是最早用于制备碳纳米管的工艺方法,后经Ebbesen等人工艺优化、改正,现已成为能宏观批量生产高纯碳纳米管的制造方法之一。该法采用直径)5~6mm的石墨棒为阳极,直径10~16 mm的石墨棒为阴极,在阳极一端钻内径3.5mm的小孔,将石墨粉末和金属钇、镍粉末混合(按Y;1%,Ni:4.2%的比例均匀混合在石墨粉末中)后填充在阳极小孔内,或采用含金属钇、镍的复合电极(电极中金属混合比例同上),在一个其内充填惰性气体或氢气的真空反应室,或在一个装液氮的容器中,通过调整阴极与阳极之间的距离以产生电弧放电,控制两极间通过的电流、电压及放电时间,让石墨炭在惰性环境、金属钇、镍的催化作用与弧光放电所产生的高温下气化,然后充分水冷,在阳极石墨棒不断消耗的同时,在反应室内壁、阴极端部以及阴、阳极四周等部位形成局部含金属催化杂质颗粒的碳纳米材料集合体。此方法是在使用金属催化剂的情况下,用脉冲激光轰击石墨表面,在石墨表面产生纳米级碳材料。

采用该石墨电弧法批量制备的碳纳米材料具有碳纳米管产率高、纯率高、纳米管呈成束状、制备所需时间极短等特点。尤其体现在单壁及多壁碳纳米管的制备上,其合成工艺参数条件的改正对碳纳米管的产率影响极大:采用反应室的不同、充填的惰性介质上的差异、阳极的

直径及其组成、添加混合的金属催化剂比例、冷却方式等各种电弧反应条件,均对制备的碳纳米材料的纯度、产率及材料结构特性、组成造成质的改变。对制备的碳纳米集合体采用扫描电子显微镜和透射电子显微镜分析观察,镜下可以看到:集中于阴极端部圆柱状沉积物周围,管束集中相互纠缠,管束直径分布在10~20mm的单壁或多壁碳纳米管,以范德华力结合在一起,排列成六边形晶体结构,在拉曼光谱图中,以140~200cm-1 和1500~1600cm-1 三个典型区域的特征峰为其特性,其间随机分布直径在3~20nm 的外覆非晶炭球形金属催化剂纳米颗粒;而在反应室、阳极四周主要分布着碳纳米管粒子、无定形碳等产物

4. 碳纳米管的应用

4.1力学应用

碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

4.2 隐身材料中的应用

碳纳米管对红外和电磁波有隐身作用:纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大减少波的反射率;纳米微粒材料的比表面积比常规粗粉大3~4个数量级,对红外光和电磁波的吸收率也比常规材料大得多。因此,红外探测器及雷达得到的反射信号强度大大降低,很难发现被探测目标,起到了隐身作用。由于发射到该材料表面的电磁波被吸收,不产生反射,因此而达到隐形效果。

4.3 能源方面的应用

储氢材料,按5人座的轿车行使500公里计算,需要3.1Kg的氢气,以正常的油箱体积计算,氢气的存储密度应有6.5wt%,目前的储氢材料都不能满足这一要求。碳纳米管由于其管道结构及多壁碳管之间的类石墨层空隙,使其成为最有潜力的储氢材料,国外学者证明在室温和不到1bar的压力下,单壁碳管可以吸附氢气5-10wt%。根据理论推算和近期反复验证,普遍认为碳纳米管的可逆储/放氢量在5wt%左右,即使5wt%,也是迄今为止最好的储氢材料。锂离子电池,锂离子电池正朝高能量密度方向发展,最终为电动汽车配套,并真正成为工业应用的非化石发电的绿色可持续能源,因此要求材料具有高的可逆容量。碳纳米管的层间距略大于石墨的层间距,充放电容量大于石墨,而且碳纳米管的筒状结构在多次充-放电循环后不会塌陷,循环性好。碱金属如锂离子和碳纳米管有强的相互作用。用碳纳米管做负极材料做成的锂电池的首次放电容量高达1600mAh/g,可逆容量为700mAh/g,远大于石墨的理论可逆容量372mAh/g。

4.4 纳米器件方面的应用

纳米导线,碳纳米管的直径仅数纳米至数十纳米,耐电流密度可达铜的100多倍,可以作为超级耐高电流密度的布线材料,半导体型的碳纳米管还可以用来构筑纳米场效应晶体管、单电子晶体管等纳米器件,变频器、逻辑电路以及环形振荡器等各种逻辑电路。IBM的研究人员已经在单一“碳纳米管”分子上构建了首个的完整电子集成电路,比当今的硅半导体技术具有更为强大的性能,具有里程碑式的重大意义。

4.5 电子器件方面的应用

场致发射,纳米级发射尖端、大长径比、高强度、高韧性、良好的热稳定性和导电性等,使得碳纳米管成为理想的场致发射材料!有望在冷发射电子枪、平板显示器等众多领域中获得应用。日本已制出该类技术的彩色电视机样机,其图象分辨率是目前已知其它技术所不可能达到的。用碳纳米管制成的电子枪与传统的相比,不但具有在空气中稳定、易制作的特点,而且具有较低的工作电压和大的发射电流,适用于制造大的平面显示器。使用具有高度定向性的单壁碳纳米管作为电子发送材料,不但可以使屏幕成像更清晰,还可以缩短电子到屏幕之间的距离,使得制造更薄的壁挂电视成为可能。

新型的电子探针,碳纳米管具有大长径比、纳米尺度尖端、高模量,是理想的电子探针材料。不易折断:即使与被观察物体的表面发生碰撞,纳米碳管也不易折断,碳纳米管可与被观察物体进行软接触。灵活性高:碳纳米管笼状碳网状结构,可以进入观察物体不光滑表面的凹陷处。能更好显现被观察物体的表面形貌和状态,有很好的重现性。用碳纳米管作为这类电子显微镜的探针,不仅可以延长探针的使用寿命,而且可极大的提高显微镜的分辨率。特别是扩展了原子力显微镜等探针型显微镜在蛋白质、生物大分子结构的观察和表征中的应用。超级电容器,多孔碳不但微孔分布宽(对存储能量有贡献的孔不到30%),而且结晶度低,导电性差,容量小。碳纳米管结晶度高、导电性好、比表面积大、微孔大小可通过合成工艺加以控制,比表面利用率可达100%,超级电容器极限容量骤然上升了3-4个数量级,循环寿命在万次以上(使用年限超过5年)。在移动通讯、信息技术、电动汽车、航空航天和国防科技等方面具有极其重要和广阔的应用前景。

大功率超级电容器,快速充放电特性:在汽车启动和爬坡时快速提供大电流及大功率电流,在正常行驶时由蓄电池快速充电;在刹车时快速存储发电机产生的大电流,这可减少电动车辆对蓄电池大电流充电的限制,大大延长蓄电池的使用寿命,提高电动汽车的实用性;对于燃料电池电动汽车的启动更是不可少的。若其容量能进一步提高,可望取代电池使用。

4.6 碳纳米管的应用-纳米机械

美国中国和巴西的科学家发明了能称量亿亿分之二百克的单个病毒的“纳米秤”,通过测量振动频率可以测出粘结在悬臂梁一端的颗粒的质量。莫斯科大学的研究人员将少量纳米管置于29Kpa的水压下(相当于水下18000千米深的压力)做实验。不料,未加到预定压力的1/3,纳米管就被压扁了。他们马上卸去压力,它却像弹簧一样立即恢复了原来形状。于是,科学家得到启发,发明了用碳纳米管制成像纸张一样薄的弹簧,用作汽车或火车的减震装置,可大大减轻车辆的重量。碳纳米管的应用-催化特点:高稳定性、高比表面积、便于化学处理等由于碳纳米管具有纳米级的内径,类似石墨的碳六元环网和大量未成键的电子,可选择吸附和活化一些较惰性的分子,研究发现其在600℃的催化活性优于贵金属铑,并很稳定。这将在石化和化工产业界带来不可估量的革新和效益。碳纳米管与金属离子之间的相互作用,使金属离子能在常温下自动趋于还原态,这对金属纳米导线的制备无疑很有裨益。

纳米多孔碳可分为微孔材料50nm。它的优点有高比表面积、高热导率、高电导率、高稳定性、高化学惰性、低密度等。它的应用于气体吸附、水净化催化载体、电化学双层电容器、电极材料、生物传感器和太阳能电池等环境治理,气体和水净化的关键材料。多孔碳的应用电化学双层电容器、催化载体、有机生物分子吸附载体、高灵敏生物传感器电极、太阳能电池等。

参考文献

[1] 张娟玲,崔屾. 碳纳米管/聚合物复合材料[J]. 化学进展, 2006,(10) .